
I m C T I V E SNOBOL4 SYSTEM FOR THE SDS 940

System Implemented By

Eric R. Anderson and Roger Sturgeon
University of California, Berkeley

Document No. R-34
Issued September 6, 1968

Contract No. SD-l&5

Office of Secretary of Defense
Advanced Research Projects Agency

Washington, D. C. 20325

3

0 ' b

.

c TABLE OF CONTENTS

c .

Introduction
SNOBOL4 Program
Strings
Names and Variables
Str ing Assignment
Concatenation
Simple Pattern Matching
Labels
The &-To Field
Simple Pattern Matching Continued
Fields of a Statement
Teletype Input and Output
Binary and Unary Operators
Arithmetic
Indirect Referencing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Grouping
Functions
User Functions
Distinction Between Names .
Order of Evaluation
Patterns
Alternation ("OR")

Arbitrary Strings
Balanced Strings
Fixed Length Strings

Concatenation

Fixed Positions In Strings .
Tabulation
Remainder
Alternative
Runs of Characters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Repetitions .
Signaling Failure .

1
2

3
4
5
6
7
9
10
11

12

13
14

15
16
17
18
19
22

23
24
24

5
5
5
26
26

26
26
27
27
28
2a

I
I) ' D . I

The Order of Pattern Matching 29
Deferred Pattern Definition 31
Value Assignment . 32

In f in i t e Loops . 34
Immediate Value Assignment 33

Additional Built-in Functions 3
Additional Input-Output Fac i l i t i e s 36
The Editor, Compiler, and Runtime 38
Special Operations . 40
Keywords . 41
Pseudo-Teletype Functions 43
LOGIN() or LOGIN(NAME. PASSWORD) 43
LOGOUT() . 44
WAIT() . 44
SEM)(S) . 4-4
ATSEND(S) . 44
RECV(N) . 45
REcVLm() . 45
ECHO(@ . 46

AppendixA . 48
AppendixB . 52

References . 53

.

Sample Pseudo-Teletype Programs 47

I

Introduction

The SDS 94jb SNOBOL~ system w i l l accept programs written
i n a language which is basically compatible with a subset of
B e l l Labs’ November 22, 1967 version of SNOBOL)+. SNOBOL4 is
not a superset of SNOBOL3 but i s i n most ways very similar

t o SNOBOL3. The major exception is i n pattern matching and
the pat tern datatype,
be created, run and debugged interactively.

The SNOBOL4 system permits programs t o

The principal data object i n the SNOBOL language i s a
s t r ing of characters.
s t r ings from shorter s t r ings through concatenations.
addition, through pattern matching, s t r ings can have the i r
contents tes ted and have the matched substrings assigned t o
s t r ing variables.

The language permits building up longer
In

Other features of the.language are arithmetic on integer
strings, bui l t - in functions fo r general use, and programmer
defined functions which may have local. variables and can be

recursive t o arbi t rary depth.
provided as well as from the teletype.

Input-output from f i l e s is

- 2-

SNOBOL4 Program

A SNOBOL4 program is a se t of statements, each involving
a rule. A se t of rules provides the means fo r manipulating
s t r ings and other deta objects.
is written only with printable characters, but the contents
of the data s t r ings can be any 8-bit characters.
is reserved as an escape character for entering non-printable
characters l i t e r a l l y into the source program.
i n a source program use SO& (see section on special operations).

1 ~ h - p r l - k l n g

Characters i n the language

Each statement of a program

The & character

To enter an &

L SenJvce. w e ighoved ~7 +~,e car, P 4

r m ' 0

'3 -.

3

C ' 0

C)

c.'

- 3-

S t r ing; s

A s t r i n g is a sequence of 8 b i t characters ordered from
l e f t t o r i g h t (see special operations f o r entering non-printable
characters).
by surrounding i t s contents by a pair of single quotes or
double quotes. When one kind of quote is used, only the other
kind may appear within the l i t e ra l s t r ing .
property of a s t r ing is i t s length. I n par t icular , the s t r ing
of length 0 ex i s t s and is cal led the n u l l s t r ing .
l i t e ra l ly as ' ' or "".

A s t r ing may be represented l i terally i n the language

A fundamental

It can appear

The s t r i n g which contains the d i g i t s i n order from @ t o 9
can be l i t e r a l ly writ ten as

'$123436789 or "jh.23456789''
These are legal " ' " These are i l legal l ' '

I " ' 1' ' 1 1'

'' ' /FIL?3NAME ' " 'CAN'T'

This is a s t r ing of length @ ' I the n u l l s t r i n g
1 'X ' the s t r ing containing X

2 'PQ' the s t r ing containing PQ

3 '"1: ' the s t r ing containing * I t

These s t r ings have different contents: 'AB', 'I"
One contains AB, the other contains BA.

I

-4-

Names and Variables

Names i n the SNOBOL4 language may be of any length (up t o
4 0 9 characters).
Each of the remaining characters must be a ., letter, or d ig i t .

The @ is intended for keyword names (see section on keywords).
Variables i n the language are those things which are given a
name and have strings, patterns, or some other data object a8
the i r contents.

The first character must be a l e t t e r or @.

These are lega l

X

STRING

@INCHOR

A. IQNG .NAME

names These are i l l e g a l names

-5 -

String Assignment

In a s t r ing processing language it is necessary t o s tore
strings, t o build up longer strings, t o t e s t s t r ings fo r their

contents, and t o take strings apart.
specified by an assignment rule of one of the following forms:

The storing of a s t r ing is

STRING- I=' LITERAL STRING

STRINGIQUE '=' S T R I N G W

STRINGNAME '='

Blanks around the = are not necessary, but a l l other binary
operators i n the SNOBOL4 language require blanks on both sides.
The th i rd example is semantically equivalent t o the first with

a nu l l str ing, ", on the right-hand side. Names which have
not been assigned a value contain the nul l str ing. The above
rules say t o take the contents of the strings on the right-hand
side and store them i n the s t r i n g variable whose name is given
on the l e f t hand side.

Examples :
STRING = 'THING'

ALPHAIXT = ' A B C D E F G H I J K I M N O P Q R S T Y Z '
LEZTERS = ALPHABET

N U L L =

-6-

' 1 ' 4

7
Concatenation

Building up longer s t r ings can be specified by concatenation
(or juxtaposition).
t o produce one long string.
between each of the par ts t o be concatenated (sometimes parentheses
are required t o denote the range of the concatenation).
t o s tore the resu l t s of a concatenation into a s t r ing variable,
simply use an assignment rule with the concatenation appearing
on the right-hand side.

Any number of s t r ings may be concatenated
The operation i s denoted by a space

Thus,

Assume the following are executed i n order:

A = 'ALPHA' A would contain the characters ALPHA
B = 'BETA' B would contain the characters BETA

D = A B C D would contain the characters ALPHABETA

since C i s assumed t o be the nu l l s t r ing.
A = B

B =

A would contain the characters BETA

B would contain the nul l s t r ing.

-7-

Simple Pattern Matchine

It is often desirable t o know i f one s t r ing is contained
somewhere within another s t r ing.
by a rule of the form: STRING ' ' STRING. That is, the s t r ing
t o be tested (the subject s t r ing) , followed by a blank (or
blanks), followed by the s t r ing t o be searched for i n the subject
s t r ing (the object s t r ing) .
pattern matching and concatenation is avoided by the f ac t t ha t
the subject s t r ing must be the first s t r ing i n the statement
and be inmediately followed by another string, the object string,
with a separating blank (or blanks). If the subject s t r ing is
t o be a concatenation of other strings, then the concatenation
must be surrounded by parentheses. If the object s t r ing is t o
be a concatenation, it does - not have t o have surrounding
parentheses.
subject string, i .e. , it is a substring of the subject string,
then the pat tern match succeeds, otherwise, the pattern match
fails .

A t e s t of this type i s denoted

The possible confusion between

If the object s t r ing is found anywhere i n the

-
Each of the following statements indicate pattern matching

is t o be done.
W l NAME2

NAMEX NAME2 NAME3 NAME4
NAME 'STRING'

'STRING' NAME
(NAME1 'STRINGl') "STRING2" NAME2

Assue X = 'AB' Y = 'ABC' Z = 'ABCD'

The following pattern matches succeed.
X 'A'
X 'B'
x 'AB'
x x
Y X
Z X 'CD'
Z Y
(x Y) "BAB"
'BABABcABcDc' x Y z

-8-

The following pat te rn matches fail
x 'X'
X Y
x z

' A ' Y
(X Y) 'AB' Z

3 ' 3

- 9-

Labels

Any statement i n a SNOBOL4 program may be labeled. A
statement is labeled if there i s a character i n the first
character position (except '*').
up t o the first blank. If a statement is t o be unlabeled, the
f i rs t character position must be blank.
labe l is t o give a name t o the statement so tha t it may be
referred to easily. END, RETURN, FRETURN may not be used as
labels since they are reserved for special purposes.

The label is a l l the characters

The purpose of the

The following statements are labeled FIRST, LOOP and NAMEl.

FIRST ALPHANUMERIC = @ A L P ~ T @DIGYXS

LOOP X = I N P u T
NAME1 NAME2NAME3

The following statements are not labeled.

A = 10

NAME1 NAME2 NAME3

-10-

The @-To Field

The l a s t f i e l d of a statement is called the go-to field.

If it is not present then,after the current statement is executed,
the statement below it w i l l be executed. The f i e l d starts w i t h

a colon, :, (followed by any number of blanks). Only e x i t
commands may follow the colon.
e x i t commands.

Below are the three kinds of

' (' l abe l name ') '
'S(' l abe l name ') '
'F(' l abe l name ') '

unconditional ex i t
success ex i t
fa i lure ex i t

If none of the ex i t commands are given a f t e r the colon, then
the statement is t reated l ike no colon was present.

A statement f a i l s (immediately) if any part of it fails,
otherwise, it succeeds. If an unconditional ex i t is given, then
the statement t o be executed is given by the label name regardless
of success or fa i lure of the statement. Otherwise, the colon
may be followed by a success ex i t , fa i lure exi t , or both
(e i ther order, blanks permitted between the commands).
statement f a i l s and it has a fa i lure exi t , then the next statement
is given by tha t labe l name; similarly, i f it succeeds and
there is a success ex i t . Otherwise, the next statement t o be

executed i s the following statement.
terminate the execution of statements.

If a

An ex i t t o END w i l l

The following are lega l go-to f ie lds .

: (IAOP)

: S(ZXX>P) F(DONE)
: F(DONE) LOOP)
: s(HEm)
: F(NEXT)

The next statement w i l l be
'AFC' 'B' :S(L1) F(L2) L l

'm' '0' : s(Ll) L1

X = Y : (AGAIN) AGAIN

'AB' 'XY' :S(Ll) the following statement

'X' 'Y' : (TOP) TOP

.
-11-

Simple Pattern Matching Continued

One method of statement fa i lure is for a pattern match t o
f a i l . Using this fact , appropriate e x i t commands can be used
t o decide if one s t r ing is a substring o f , another. If the

subject s t r ing i s given by name (i .e. , it i s not a concatenation
or l i t e r a l) then a successful pattern match can be followed by
a replacement. The rule has the form: STRINGNAME STRING '=' STRING,

where e i ther STRING can be an arbitrary concatenation of strings.

The subject s t r ing is searched from l e f t t o r igh t for the first

occurrence of the object s t r ing.
the subject s t r ing matched by the object s t r ing is replaced by
the s t r ing on the right hand side.
replacement is done since the statement fails immediately.

statements which contain pattern matching but no replacement
f i e l d (i . e . , no =) the subject s t r ing i s not affected even if

matching is successful.
These statements resu l t in TOPCARD = 'KING OF SPADES' and an
e x i t t o OUTIT.

If it i s found, the par t of

If the pattern fails, no
For

TOPCARD = 'ACE OF SPADES'
TOPCARD 'ACE' = 'KING' :S(OUTIT)F(TRYAGAIN)

These statements resu l t i n ST3 = 'ABBBXXXBBA'

ST1 = 'AB'
ST2 = 'BA'

ST3 = 'ABBWBABBA'

ST3 ST1 ST2 = 'XXX'

These statements resu l t i n TEST = ' ,PQ,R,WXY,m, '
LIST = ',PQR,WXY,KLM,XZ, '
E W N T = 'XZ'
TEST = LIST
TEST ' , l ELEMENT ',' = ' 9 ' :s(SUCCESS)F(FAIL)

-12-

Fields of a Statement

There are f ive f i e lds t o every statement.
LABEL REmRENCE PATTERN REPLACEMENT GO-TO

If the label f ie ld is missing, then the statement i s unlabeled.
If the reference f ie ld is missing, the pat tern and replacement

f i e l d must be missing. Thus, the statement is a t most a 90 -bQ
statement that w i l l succeed.

If the pat tern f ie ld is missing, then the statement is a t most an
assignment statement.

If the replacement f ie ld is missing, it is at most a pat tern match
without replacement.

If the go-to f i e ld is missing, the following statement w i l l

be executed next.

The following statements contain:
1.
2. Simple assignment,
3. Unconditional branch,
4.

Pattern match w i t h replacement and an unconditional ex i t ,

Pattern match with ex i t depending on success or fa i lure
of the pat tern match.

Label Reference Pattern Replacement Go-To
Field Field Field Field Field - -

1. LABEL REFER PAT II. REPLACE :(GOTONEXT)
2. NAME = 'W'

3 . FIN1 : (EIJD)
4. SUBJECT :s(s) F(F) OBJECT

-13-

Teletype Input and Output

INPUT, OUTPUT, INPUTC, OUTPUTC are special teletype input-
output variables.
s t r ing value i ts contents are printed. A carriage return and
l inefeedare supplied at the end of the s t r ing and a f t e r every

72nd character printed on the teletype. Anytime the variable
INmpT is used, i t s value w i l l be collected from the teletype up
t o a carriage return, which is deleted from the string.

and output rather than l ine input and output. INPUTC col lects
exactly one character from the teletype.
contents t o the teletype when it i s assigned a value.
carriage returns are supplied, tha t is, it outputs i ts contents
l i t e r a l l y (see special conventions concerning l i ne input).
Execution of the following will pr in t the l i ne "NOW IS" a f t e r
the l i ne "NOW" is typed in.

Anytime the variable OUTPUT is assigned a

INPUTC and OUTPUTC are used for character-oriented input

OUTPUJ!C outputs i t s
No

OUTPUT = INPUT 'IS'
After the following program is run the teletype l i ne w i l l be

"APPEJXD", "BREAK", or "CHANGE", or a character which is not
A, B, or C followed by a ? .

x = INPUTC

X 'A' :S(A)

X 'B' :S(B)
x ' C ' :s(c)
OUTPUT = ' ? ' : (END)

B OUTPUT= 'R.EA?-C' : IEND)
A OUTPUT='PpEND' : (END)

C OUTPUT = 'HANGE' : (END)

The following statements will pr in t "PROBLEM NUMBER" on the

teletype and w i l l pick up a response terminated by carriage
return on the same l ine .

OUTPUTC = 'PROBUN NUMBER'
NO. = INPUT

Binary and Unary Operators

There are many operators i n the SNOBOL4 language, e . g.,
+, -, *, /, MP $, =, ., :. A binary operator requires a space

on both sides of it (except for the binary operator space, as
i n concatenation, and the = operator).
- not have a space between it and i ts operand.
not required for multiple unary operations (see precedence table) .

A unary operator may

Parentheses are

The following are legal statements:
X=A * B

A B = C

x = $$$y

These are i l l ega l :
X = A * B

A B .C

x = $$$ y

3 ' *

-15-

Arithmetic

A s t r ing i s an integer if it is the nul l s t r ing (value $)
o r it is a s t r ing of d ig i t s with or without a leading + or -,
and i ts absolute value is l e s s than 223-l. A l i t e r a l s t r ing of
d i g i t s may be written with or without surrounding quote marks.
Arithmetic on integers resu l t s i n integers w i t h leading + signs
and p)'s suppressed. If the value of an arithmetic operation is
fl, the resu l t w i l l be the s t r ing 'fit.
I-, -, *, /, * are used for addition, subtraction, multiplication,
division, and exponentiation, with the usual precedences prevailing.
The unary operators +, - are used for plus and minus.
can be used as needed.
error message i f the result ing integer is too large, i f division
by p) occurs, or if $ is raised t o a power < $.

The binary operators

Parentheses
An arithmetic operation w i l l cause an

-

These are integers
'123'
123
+1

1 - 1 1

These are lega l statements
x = (Y + 2 + 1) * w
OUTPUT = 5 1 '2'

These statements output the resu l t of dividing X by Y.

Y i s $, it w i l l output "INFINITE".
will be explained later.

If
The function NE, not equal,

ANSWER = NE(Y,$) X / Y :S(OUTIT)
INF O U T P U T = 'INFINITE' :(END)
OUTIT OUTPUT = ANSWER :(END)

c.

-16-

Indirect Referencin&

A program may construct names by using the unary operator
The resu l t is a name which is the same $ applied t o a s t r ing.

as the contents of the string.
anywhere tha t a name i s legal (except i n the labe l f i e ld) .

the go-to f i e l d the resul t ing name should be a label.
referencing can become a remarkably powerful f a c i l i t y since it
provides the a b i l i t y to change the names that are used i n a
statement between executions of that statement. It is important
t o note tha t names obtained by indirect referencing do - not
have t o conform t o the Q, l e t t e r s , digits, and . rules for
names appeazing i n the source language.

Indirect referencing may appear
In

Indirect

If NAME1 = 'ALPHA',NAME2 = 'BETA',NAME3 = 'GAMMA', and LABEL = 'OK'
then the following two statements would accomplish the same thing.

ALPHA BETA = GAMMA :S(OK)
$NAME1 $NAME2 = $NAME3 :S($LABEL)

If Y = ' A ' , A = 'B', B = ? C ' , C = 'D' then af'ter the following
statement is executed X w i l l contain D.

x = $$$y

Parentheses are used for grouping par ts of a statement
together, e.g., i n arithmetic operations. The subject s t r ing
of a pattern match can be given by a grouping of a number
of s t r ings together, or the name of the subject s t r ing can be
given by a $ applied t o a grouping. I n general, groupings can

appear i n any field of a statement except the labe l f i e ld .

This is a lega l statement.
$(X Y Z) (A + B) / C = (A * B) we 2 :S($(Al))

-18-

Functions

In most programming languages the idea of a f'unction is
perhaps the most powerful feature.
arguments and produce a resu l t which depends on those arguments,
A function appears i n the SNOBOL4 language as a function hame
followed by a '(> followed by a l i s t of arguments separated by

comas, followed by a closing')'.
and missing arguments are assumed t o be null .
are recursive and the arguments are transmitted t o the f'unction
by value (t o be explained l a t e r) .

language there are a number of pre-defined functions, e.g.,

A function w i l l take some

Null arguments are permissible
SNOBOL4 f'unctions

Throughout the SNOBOL4

SIZE(S)t m (I , J), LT(I, J), GE(1, J), GT(I, J), EQ(I , J), W(It J)
SIZE returns the length of the s t r ing argument.
make comparisons between two integer s t r ing arguments.
example, LT(1, J) returns the nu l l s t r ing if I < J; otherwise,
it fails.

If a function succeeds, it will return a value (many times
it is a nu l l s t r ing) .
a statement (not the labe l f i e ld) .
a function t o f a i l if it i s i n the go-to f ie ld .

The others
For

SNOBOL4 functions may ei ther succeed or f a i l .

A function may appear i n any f i e l d of
It i s a f a t a l error f o r

The following are lega l statements
x = SIZE(Y)

x = GT(Y,X) Y :s($(lxt SIZE(Y)))
If X and Y are nu l l str ings, then the following function ca l l s are
equivalent .

EQ(Xt Y)
EQ(t y)

EQ(X,

E Q W

EQ(,)
EQ()

-19-

User Functions

The user is permitted t o define his own functions. There
are four par t s t o the use of a user defined SNOBOL function.
1. Defining the function, l i s t i n g i ts formal arguments, i t s

loca l variables, and the label of its s ta r t ing Statement.
Calling the function with actual parameters. 2.

3. Executing the function.
4. Returning from the function w i t h a value or a fa i lure

return from the function, and i n e i ther case restoring
saved values.

c.

A function is defined by executing a DEFINE function w i t h

The DEFINE f'unction has two arguments. appropriate arguments.
The first arbment i s ZL s t r ing which contains the name of the

function, followed by '(: followed by a l i s t of formal arguments
(i f my) separated by , 's, followed by'): followed by a l i s t
of loca l variables (i f any) separated by\ , ' s .

argument i s a s t r ing which contains the labe l name of the first
statement t o be executed i n the function.
the labe l name i s assumed t o be the same as the function name.

The second

If it is null ,

The body of a function can be any of the statements of

the program.
RETURN or F'RETURN.
labels .)

ment containing the function is evaluated (see order of evaluation).
It appears i n the source statement as a function name followed
by an argument l i s t i n parentheses.
function is as follows.

The termination of a function is by an e x i t t o
(RETURN & FRETURN cannot be user-defined

The c a l l of a function is done when the par t of the s ta te-

The execution of the
The actual arguments have been

evaluated, i .e. , a l l operations and function calls i n the

arguments have been conrpleted, yielding actual argument values
(of any datatype) t o be assigned t o the formal arguments.
the current contents of the variable whose name i s the same as
the function name i s saved.
arguments and the loca l variables itre saved i n the order specified
when the function w a s defined.

Then

Similarly, the values of the formal

Then for formal

-20-

arguments are given the values of the actual arguments.
assignments are done le f t t o r igh t ; each actual argument i s
assigned t o the formal argument i n the corresponding posit ion.
Any missing actual arguments are assumed t o have a n u l l value.
The variable whose name is the same as the function name is
given a n u l l value and the loca l variables are also assigned
n u l l values.

The

The function is terminated by an e x i t t o e i the r RETURN

or FRETURN.

value is the contents of' the variable whose name is the same
as the function name.
statement which c a l l s the function f a i l s . In either case t h e

saved values of the variable whose name is the same as the

If the e x i t is t o RETURN, then the function's

If the e x i t is t o F'RETURN, then the

function name, the formal arguments, and the loca l variables
are restored.
other functions (before returning) including i tself . Any e x i t
t o RETURN or FRETURN i s a return from the most recent function
cal l . The number of functions cal led which have not yet

returned is cal led the l eve l of recursion.
function increases the l eve l by one.
been cal led the l eve l is d.
l eve l n changes the l eve l t o n+l and the return from the function
is when the l e v e l changes from n+l t o n by a RETURN or FRETURN.

An e x i t t o RETURN or FRETURN at l eve l a" is an er ror .

It is quite permissible fo r a function t o c a l l

Every ca l l of a
Before any function has

A function which is cal led at

The following is the renowned f a c t o r i a l function.
FACT FACTORIAL = GT(N,H N * FACTORIAL(N - 1) :S(RETURN)

FACTORIAL = 1 : (RETURN)
A program which takes a number N >@from I the teletype and outputs

N! i s the following.
START DEFINE ('FACTORIAL(N) ' , 'FACT')

OUTPUT = FACTORIAL(INPUT) : (END)
FACT FACTORIAL = W(N& N * FACTORIAL(N - 1) :S(RETURN)

FACTORIAL = 1 :(RETURN)

(1.
- 21-

The maximum function of two integer arguments can be defined by
the statement

DEFINE (' MAX(X, Y) ')
and the function body can be

MAX MAX = GT(X,Y) x :S(RETURN)
MAX = Y :(RETURN)

-22-

Distinction Between Names 3
The names of a variable, a function, and a labe l are

d i s t inc t even when they are spelled the same. But there is the
def ini te connection between the value of a f'unction and the
contents of the variable whose name i s the same as the function's
name. Also, it i s common for the label of the f irst statement
i n the function t o be the same as the function name.

I

-23-

Order of Evaluation

(II

The order of evaluation of a statement is extremely
important i n determining the effect of the statement's execution.
The ordering is as given below and is l e f t t o r igh t in a l l
f ie lds , except as modified by the precedence of operators.

1. The reference field i s evaluated. If it fails, the
statement fails.

2. If there is a pattern f ie ld , it is evaluated. If it f a i l s ,
the statement fails.

Pattern matching is attempted. A l l immediate assignments
(t o be explained l a t e r) are done regardless of eventual
success or fa i lure of the pattern match.
the statement fails. If the match succeeds, a l l assignments
(t o be explained later) are done regardless of eventual
success or fa i lure of the statement.

If the match fails,

3. If there is a replacement f ie ld , it is evaluated. If it
f a i l s , the statement f a i l s ; otherwise, the replacement or
assignment is made.

If any of the above fails, the statement f a i l s ; otherwise,
the statement succeeds.

4. The appropriate go-to f i e l d i s evaluated. A l l function
c a l l s within the go-to f i e l d must succeed.

- 24-

Patterns

So far the only data object discussed has been a s t r ing
(although some s t r ings are integers).
introduce a new object called a pattern.

In t h i s section we w i l l

Since a pat tern is a
data object, it may be stored i n a variable. That is, assignment
statements with a pat tern i n the right-hand side s tore the
pat tern i n the variable on the left-hand side. So far we have
m e t j u s t one kind of pat tern matching, i . e . , a test of whether

or not one s t r ing is a substring of another. For the purposes
of t h i s section, a s t r ing can sometimes be thought of as a
pa t te rn (although it is a data object of type string, not pat tern) .
The general idea behind a pat tern is that the pat tern matches
a number of different s t r ings. It t r i e s each of the possible
matches against the subject s t r ing i n some specified order.
first match is taken as the successful pattern match; the
matched substring is replaced if there is a replacement f i e ld .
If none of the possible substrings match, then pat tern matching
fails .
ru les fo r combining them.

The

Below are l i s t e d the available pat tern elements and

Alternation ("OR")

A pat tern which can match whatever any one of a number of
a l ternat ive pat terns w i l l match may be formed by using the !
binary operator. The operands are patterns (or s t r ings) . The
! operator has lowest precedence of a l l operators. If P1, P2,
and P3 are patterns, then the pat tern which w i l l match whatever
P1, or P2, or P3 matches can be written P1 ! P2 ! P3.
P1 is tried fo r a match; if it fails, then P2; if it fails,

then P3.

Fi r s t ,

If P = 'AA' ! 'AB' ! 'AC',then P can match any of the substrings
'AA ' , 'AB', or 'AC'.

-5-

Concatenation

A pattern may be formed by the concatenation operator(space)
which can match the concatenation of s t r ings matched by each of
a number of patterns.
s t r ing and P2 matches some other par t of the subject s t r ing
such that the two pa r t s are adjacent i n the subject s t r ing, then
P1 P2 matches the concatenation of the two parts.

If P = ' A ' (' A ' ! 'B' ! 'C'), then P can match an A followed by

an A, B, or C .

If P1 matches some part of the subject

Arbitrary Strings

"he variable name ARB contains the primitive pat tern which
can match any number of characters.
s t r ing (6 characters).
character, e tc .

It first matches the n u l l
If that fails, it w i l l t r y one more

'A ' ARB ('B' ! ' C ')

can match substrings of the form A followed by any number of
characters up t o a B o r a C .

ARB ',' can match any substring ending i n a ,.

Balanced Strings

The variable name BAL contains the primitive pat tern which
can match any non-null s t r ing of characters which i s balanced
with respect t o the number of l e f t and r igh t parentheses.

is, it matches a t l e a s t one character, and left; and right

parenthesis can be paired up such that every l e f t parenthesis
comes before the corresponding r igh t parenthesis.

' (X Y Z) ' , ' ()I , '((AB)CD)' and not any of these ') (', 'ABC)',

matching '))) (' and BAL matching ' (()) '

That

Thus, BAL can match any of the following substrings 'ABC',

((X)' . "he following pattern match w i l l succeed with ARB

' >>) (((1)' ARB BAL-

There are several primitive functions which w i l l re turn

pat terns as t h e i r value.

- 26-

Fixed Length Strings

The function LEN(N) requires an integer argument and
returns as i t s value a pattern which can match any s t r ing of
exactly N characters.

'ABCDEFGH' WN(3) 'G '

Here LEN(3) matches 'DEF' and 'G' matches ' G I .

Fixed Positions I n Strings

The function POS(N) requires an integer argument and returns
as i t s value a pattern which w i l l match the nul l s t r ing immediately
a f t e r the Nth character of the subject string. That is, it
checks fo r the proper position in the subject string, i n particular,

POS($) w i l l only match a t the start of the subject s t r ing.
Similarly, RPOS(N) w i l l match the nu l l s t r ing N characters

from the end of the subject string.

will%atch at the end of the subject s t r ing.

I n particular, RPOS(@)

SUBJECT pOS(f6) RAL RPOS($)

This w i l l succeed i f the subject s t r ing is balanced with respect
t o parentheses since BAL is forced t o match the whole s t r ing.

Tabulation

The function TAB(N) requires an integer argument and returns
as i t s value a pattern which w i l l match a l l characters up t o and
including the Nth character of the object string.
RTAB(N) w i l l match up t o the l a s t N characters.
RTAB(f6) will match t o the end of the subject string.

Similarly,
In par t icular ,

Remainder

The variable name REM contains the primitive pattern which
w i l l match the remainder of the subject string. It is equivalent

t o RTAB($).

c.

The following pattern match will succeed wi th TAB(4) matching
CD' and RTAI3(2) matching 'EF '

'ABCDEFGH' 'B' TAB(&) RTAB(2)

In the following REM matches 'BABCBA'

'ABCBABCEA' ' C ' REX4

Alternative Characters

The function ANY(S) requires a s t r ing argument and returns
as i t s value a pat tern which w i l l m tch any character which
i s in the s t r ing S.

character which is not i n S.

Conversely, NOTANY(S) w i l l match any

Runs of Characters

The function SPAN(S) requires a s t r ing argument and returns
as i ts value a pattern which w i l l match a s t r ing composed of
characters which are i n the s t r ing S. It -- w i l l not match the
nu l l str ing, i .e . , it must match a t least one character. It
-- w i l l not match a s t r ing of characters i f the run of characters
from S can be lengthened, i .e . , it matches up t o the f i rs t
character not i n S or e l se the end of the subject s t r ing.
Conversely, BREAK(S) w i l l match characters which are not i n S

up t o the f irst cnaracter which is i n S. It - can match the nu l l

s t r i ng and -- w i l l not match if a Preak characterl cannot be found.

Let X = 'ABCDEFGHIJXLMNoPgpsnrrWXna1234fj6789' then the pattern
P = (pOS(fb) ! NOTANY(X)) NAME (NOTAM(X) ! RPOS($)) w i l l match

successfully if there is an occurrence of the s t r ing NAME i n the
subject s t r ing which i s not preceded or followed by an adphanumeric
character.

a& $

' 1 2 3 ~ ~ ~ ~ 4 5 6 ' SPAN(' A B C D E F G H I m O P S m n ')
Here the SPAN matches 'ABCD' .

- 28-

Repetitions

The function ARBNO(P9 has a pattern argument and returns
as i t s value a pattern which matches any s t r ing that would be

matched by an arbi t rary number of consecutive occurrences of
the pat tern P. It first matches the nu l l str ing. It is equi-
valent t o the pat tern X where X = ' ' ! P *X(the * operator
w i l l be defined l a t e r) . That is, if it ever matches n PIS,

then it w i l l t r y n+ l P ' s next. If the n+lst P fails t o match,
it w i l l t r y more cases of n PIS, if any.

'ABCDEFGHIJKL' POSm ARBNO(IJEN(3)) RPOSW

w i l l match the complete subject string since it is of length
12 = 3*.

Signaling Failure

The variable name FAIL contains the primitive pattern which
w i l l always f a i l t o match.
the primitive pattern which w i l l match the nu l l str ing, but
if t r i e d fo r alternatives (rematch), it w i l l cause pattern
matching t o completely f a i l .
the primitive pat tern which w i l l cause pattern matching t o
completely fa i l .

No matter what pattern P is, the following w i l l always f a i l :

The variable name FENCE contains

The variable name ABORT contains

SUBJECT P ABORT

This succeeds
'AB' 'A' FENCE 'B'

T h i s fails
'ACAB' 'A' FENCE 'B'

The FAIL alternative i n the following is superfluous
'ABC' 'A' (FAIL ! 'B' ! 'C')

5 1

,

'i. 3

c-

c

- 29-

The Order of Pattern Matchinq

A pat tern is made up of subpatterns which are combined by
concatenation and alternations.
the contents or e l se the returned values of:
U N (N) , POS(N), RIPOS(N), TAB(N), RTAB(N), REM, ANY(S), NOTANY(S),
SPAN(S), BREAK(S), ARBNO(P), FAIL, FENCE, ABORT.
four states of the pattern matching process tha t are of interest :
match, success, f a i l , rematch. Success and failure here have
l i t t l e t o do with success and fa i lure of the statement. These
are loca l s t a t e s of the pattern matching process.
sections s t a t e what each of the primitive patterns w i l l first
match. If for some reason a match of an element does not work
out l a t e r on, it i s tr ied fo r a rematch.
elements f a i l t o rematch.
rematch. (FENCE aborts a l l matching on rematch.) ARB and
ARBNO(P) f irst match the nu l l s t r ing. BAL first matches a
substring of one character, or e lse more, i f the first character
was a'('which needs t o be balanced.
has matched it extends that by one chwacter.
remain i n the subject string, then ARB fails t o rematch.
BAL has matched, on rematch it w i l l t r y t o extend that by
another balanced substring of one or more characters.
that, rematch fails. ARBNO(P) on rematch t r i e s t o extend
whatever it has matched by whatever another P w i l l match.
Fail ing that, it w i l l rematch the previous P's .

The primitive patterns we
strings, ARB, BAL,

There are

The previous

Most of the primitive
ARB, RAL, ARBNO(P) can be tr ied t o

On rematch whatever ARB

If no characters
What

Fail ing

A match of a concatenation is attempted by trying t o match
i ts f i rs t operand.
operand.
t ion succeeds.
operand is tr ied f o r a rematch.
then the concatenation fails t o match.
be rematched, then the l a s t operand i a rematched, etc.

If that succeeds, it w i l l t r y i t s next
If all operands eventually succeed, then the concatena-

If any operand fails t o match, then the previous
If the first operand fails,

If a concatenation must

A match of an alternative is attempted by trying t o match
the f irst operand.
If it fails, then the next operand i s t r ied .

If tha t succeeds, the alternation succeeds.
If a l l operands

-30-

fa i l t o match, then the alternation fails t o match.
alternation must be rematched, the operand that was matched
last is rematched. If t h i s fails, then the next operand i s
t r i e d for a match, e tc .

If an

The matching process begins w i t h the first character of
the subject s t r ing. Each primitive pattern element tha t
matches extends the substring t h a t has been matchd.If pat tern
matching fails using the f irst character of the subject string,
a pattern match i s attempted s ta r t ing w i t h the next character
i n the subject string, and so on, u n t i l there are no more
characters i n the subject s t r ing a t which t o t r y t o start a
match. If pat tern matching succeeds, it will have matched some
substring of the subject s t r ing which can be replaced if the
statement contains a replacement f ield. If pat tern matching
fails , then a l l possible substring matches of the subject
s t r ing have fa i led t o match.
matching process causes the statement t o f a i l .
t o set a mode where only matches which include the first
character of the subject s t r ing (or no characters a t a l l) are
attempted.
t o the keyword @ANCHOR (see keywords)

Complete fa i lure of the pat tern
It is possible

This mode can be set by assigning a negative integer

- 31-
Deferred Pattern Definition

FJan;Bpspza-
In i s j u s t l ike using the pattern tha t was stored in the-.

particular, when a pat tern i s defined, it may be defined i n terms
of other patterns.
the current values of i t s components are used.
following statements:

P = RPOS(j6)

Q = pOS(@) ARB P
P = RPOS(1)
S m C T Q

When a pattern is constructed (defined),
Consider the

What i s the pattern Q tha t i s used?
became the pattern pOS(/b) ARB RPOS($) and it has not been
redefined.

When Q was defined, it

A t times it i s desirable t o define a pattern in terms of
another pattern without the value of the other pattern being
defined yet.
name is evaluated a t definit ion time), says t o use the pat tern
given by the name whenever a match of t h i s pattern i s attempted.
Because * operates on a name t o yield (eventually) a pattern,
the * operator may only appear where a pat tern is allowed.
I n ptwrticular, it cannot be used where an integer or s t r ing
argument is expected, i .e . , SPAN(*S) and POS (*N) are i l l ega l .

The unary operator *, when applied t o a name (the

-

Altering the previous example a b i t , now what is the

P = RPOS($)

Q = POS (6) ARB *P
P = RPOS(1)
SU&TECT Q

pat tern Q t ha t is used?

Q i s POS(/b) ARB *P which here is equivalent t o POS(f6) ARB RPOS(1).
The * operator can be used t o yield recursive pattern

definit ions.
p = 'B1 ! *P ' C ' can match any of the following substrings
I B t , 'Sf, 'BCC', 'BCCC', e tc .

I i
I I

- 32-

Value Assignment

When a pattern successfully matches, it is possible t o
assign the substring matched by any component (subpattern) of

the pattern t o a variable. The binary operator . is used t a
indicate value assigmnent; i n case the pattern successfully
matches.
its r igh t operand is a name.

Its le f t operand i s a pattern (or subpattern) and

If pattern matching is successful and the subpattern was
part of the successful match, then the substring t h a t the
subpattern matched w i l l be assigned t o the variable w i t h the
given name.
match, then no assignment is made.
assignments l ike ARB . X . Y.

match, then X and Y would receive the same value.
are made l e f t t o right; thus, i f two assignments are made t o
the same name, the last assignment would be the r ight most
assignment.

If the subpattern was not par t of the successful
It is possible t o do multiple

If the ARB was par t of a successful
Assignments

Consider the following pattern matches.

'ABCDEFGH' (ARB . X '3'') Y

The pattern match succeeds result ing i n the assignments

X = 'ABCDE', Y = 'ABCDEF' .
''123456789' (1 . X I ' 2 ' . Y) LEN(3) . 2

The pat tern match succeeds result ing in the assignments

X = 'I1, 2 = '234' . Y w i l l r e ta in i ts previous value.

Suppose STRING = 'AB,CD,EF' .

The pat tern match w i l l succeed with X = 'CD' and w i l l r esu l t
in STRING = 'AB;CD;EF' .

STRING ',' ARB . X ',' = ';' X I * ' 2

' I \ -

- 33-

Immediate Value Assignment

The value assignment described i n the previous section
occurs only on successful completion of pattern matqhing.
is also possible t o assign a substring matched by agur component
(subpattern) of a pattern whenever tha t component successfully
matches during the pattern matching process, regard4ess of the
eventual success or fa i lure of pattern matching.
operator $ i s used in the same way . i s used, excepl; that

assignments are immediate.
with deferred pattern definition, so t ha t whenever & variable
i s assigned a new s t r ing value by immediate assi-nt the
deferred pattern of the same name becomes a pattern which
matches the new s t r ing value.
matcher will signal fa i lure as soon as it knows it $.s no use
trying any more possible matches, immediate assignments may not
always have their expected f i n a l value when the subpattern i s
not par t of a successful pattern match. In order t4> assure
tha t the pattern matches will t r y all possible matches, the
keyword @FULLSCAN can be se t (t o -1).

It

TQe binary

Immediate assignment caq be combined

Due t o the fac t t h a t the pattern

Consider the following pattern matches.
' W A B C D ' EAL $ Z *Z

The pat tern match succeeds with Z = ' A X ' . The pa$tern
BAL $ Z *Z matches only substrings of length 2 or lwger i n which
the first half of the substring is identical t o the second half
and is balanced with respect t o pesentheses.

The pattern match fails but X and Y are assigned new values.
X = ' A ' , Y = 'B' since an A and a B occur# i n the s$ring.

'ABC' ('A' $ X 1 'B' $ Y) 'D'

- 34-

Inf in i te Loops

The pattern matcher i s sophisticated enough t o prevent a l l
When an inf in i te loops (due t o recursive pattern definit ions).

i n f in i t e loop is detected, the matcher w i l l know that it is
useless t o t r y t o match some deferred pattern and w i l l s ignal
t ha t the match of tha t deferred pattern fails, thus seeking
alternative rematches. Suppose X = 'A' ! *X 'B' then, taken
l i t e r a l l y , the following pattern match would go into an inf in i te
loop. < , , y 4 4 L J O U ~

'C' (*x ! 'C')
f

That is, X i s first t r i e d for a match. 'A' fa i l s t o match,
therefore, the alternative is t r ied. The f i rs t thing i n the
alternative is a match of the current value of X. Thus, a
second attempt t o match X is made. 'A' fails t o match; therefore,
the alternative is t r i ed . The f i rs t thing i n the alternative i s
a match of the current value of X.

match X i s made. 'A' fails t o match; therefore, the al ternat ive
(t o t h i s instance of X) i s t r ied .
alternative i s t o match another X. And so it goes. The f ac t
i s tha t the pat tern matcher catches t h i s loop quite easily,
signaling fa i lure a t the second instance of X. Thus, the first
instance of X a lso f a i l s . The alternative 'C' is now tried and
the pattern match succeeds. I n particular, such patterns as
X = *X w i l l always f a i l .

Thus, a second attempt t o

The first thing in the

1 _._--

I-
I I
I ' \

I

C' I

4

Efficiency i n Patterns

The following eight ideas on more e f f i c i en t pa t te rns are
not exhaustive but cover many of the most common or most cos t ly
cases of inefficiency.

1.

2.

3.

4.

3 *

6 .
7 .

a.

A pa t te rn t h a t could be anchored should be anchored if
it can possibly f a i l and thus t r y many extra unanchored
matches.

ARBNO is r e l a t ive ly slow. It is much preferabLe t o f ind
another construction i f possible (without resor t ing t o
deferred pa t t e rns) . For example, i n most cases, AIiBNO(' I)

is best replaced by SPAN(' I) !

In many pat terns a BREAK or SPAN can be used idstead of ARB.

In such places it is usually preferable t o use such a

construction since BFUAK and SPAN are extremely e f f i c i e n t .

Such constructions as ' . I ! I , ' are best replaced by

Use FENCE or pOS($) t o anchor the pa t te rn .

ANY(' * >)
Immediate value assignment should be avoided if possible;
otherwise, many superfluous assignments ray be made during
pa t te rn matching.
If possible, do not use FULLSCAN mode.
When using deferred pat terns , avoid l e f t recursion and
other associated ineff ic iencies .
catch i n f i n i t e recursion but it can be extremeJy expensive
i n time.

It is very important t h a t pa t te rns be constructed once

instead of everytime t h e pa t te rn is t o be used.
pa t te rns are best defined once and f o r a l l i n the beginning
of the program outside of program loops.

assigning t h e pa t te rn t o a variable and using the var iable
wherever t h a t pa t te rn w a s t o be used.

The pat tern matcher can

Constant

Th i s is done by

-35-

Additional Built-in Functions

CLOCK(I)

- Returns a nu l l s t r ing if X is an integer string,
otherwise, it f a i l s .

- Takes a s t r ing argument and returns thg same s t r ing

- Takes no argument and returns an 8 chaFacter s t r ing
with t r a i l i n g blanks removed.

which is the current date.
Format W/DD/YY

- Takes no argument and returns a 7 charftcter s t r ing
which is the current time according to a 2bhour
clock.
Format HHMM:SS

i s $, it returns the elapsed time counter (BRS 88).
If the argument is not $, it returns t@e r e a l time
counter (BRS 42).
1/6$ of a second.

- Takes an integer s t r ing argument. If $he argument
,

Both counters are i p uni ts of

IDENT(S,S) - Compares two string arguments and returns the nu l l
s t r ing if they are identical, otherwis?, it fails.

DIFFER(S,S)- Compares two s t r ing arguments and retWns the nu l l
s t r ing if they are not identical, otheewise, it
fails. \r

-36-

Additional Input -Output Fac i l i t i es

INPUT, OUTPUT, INPUTC, OUTPUTC have been introduced f o r
teletype input-output by line or characters.
explains how t o associate other s t r ing names w i t h f i l e input-

A f i l e is

The following

output.
To communicate w i t h a f i l e it must be opened.

opened by cal l ing e i ther OPENIN or OPENOUT depending on whether
it is t o be an input or an output f i l e .
a single argument which is a s t r ing containing a complete f i l e
name.
references t o tha t f i l e .

These f'unctions require '

The returned value is a f i l e number which is used t o make

To f a c i l i t a t e obtaining f i l e names, the s t r ing name F I L E W
when used l ike INPUT pr in ts "FIX3 NAMG" on the teletype and

col lects a f i l e name.
complete f i l e name.

Thus, the value of F I J X W w i l l be a

Associations between s t r ing names and f i l e s is done by the

ASSIGN function, which requires two arguments.
argument contains the string name, the second contains the f i l e
number.
other assignments are voided. When it is assigned t o an output

f i l e , other output assignments remain.

The first

When a s t r ing name is assigned t o an input f i l e , a l l

Input and output c& be by l i ne or chasacter. In i t i a l ly ,
It a s t r ing name which is assigned t o a f i l e is of type l ine .

can be changed t o type character by cal l ing the function CHAR
which requires one argument, the s t r ing name. Similarly, it
can be changed back t o type l ine by call ing the function LINE.
New assignments t o the s t r ing name w i l l not change the mode.

Character input i s j u s t one character. Line input from a

f i l e reads everything up t o a carriage return, linefeed which
is discarded. Line input from the teletype is in the same

format as source statements. The result ing s t r ing has every
cC deleted and has a l l & codes translated.
(Dc as f irst character of teletype l ine) causes fa i lure of
the statement.

End of f i l e

-37-

c

Character output i s l i t e r a l output of the contgnts of the ,
s t r ing .
feeds and recognizes the l i ne length of the output f i l e .

when the f i l e is opened. It can be changed by c a l l b g the

function, LENGTH, which requires two arguments. The first
argument contains the f i l e number, the second contapns the new
l i n e length of the f i l e . (If the second argument i i s @ o r nul l ,

To release a l l input or output assignments associated with

Line output supplies needed carriage returns and l ine-

The l i ne length of an output f i l e is i n i t i a l l y s e t t o 72

the new l i n e length will be w.) V 2z3- 1

a s t r ing name, c a l l the function RELEASE with the akgument
containing the s t r ing name.

To close a f i l e c a l l CLOSE w i t h the f i l e numbep as the

argument. A negative argument w i l l close a11 f i l e s ,

Examples :
!N61 LE-

N = OPENIN(-)
ASSIGN(' IN' ,N)
CHAR('IN')
M = OPENOUT("t/NEWFn;Ftw)
ASSIGN('OUT' ,M)
ASSIGN('OUT', 1)
CHAR('OUT') LINE('OUT')
LENGTH(M,l28)
OUTPUT = INPUT :F(EOF)

CLOSE (N)
RELEASE ('OUT')

CLOSE (-1)

CLOSE 7

- 38-

The Editor, Compiler, and Runtime

The SDS 94fi SNOBOL4 system is divided into two d is t inc t
parts: The editor-compiler and the runtime. The editor-compiler
is used t o write, modify, and compile source statements. The
runtime is responsible for the execution of statements.

The editor types $ when it is ready for commands. The
edi tor is in most ways l i ke QED.

required t o use the capabili t ies of the edi tor .
commands which are similar t o QED commands are /, =, +, APPEND,

CHANGE, DEmTE, EDIT, FINISHED, INSERT, MODIFY, QUICK, READ FROM,

Familiarity with Q,ED is
The edi tor

SUBSTITUTE, TABS, VERBOSE, WRITE ON. Additional commands are BREAK,
GO, HELP: KILL, LIST,*PROCEED, and space followed by a SNOBOL

SUM? NEXT

statement (which cannot be a comment nor be labeled) t o be
immediately executed.
or using APPEND may be typed i n direct ly . As each statement i s
read or typed, it is compiled. If there i s an error, one edits
the statement immediately. A l l standard &ED addressing can be
used; however, buffer operations are not available for addressing
and edit ing.
is tha t every l ine typed i n is an e d i t of the previous l i ne typed
or deleted. One consequence is that control D is a terminator
only when no characters are i n the new l ine. The QED commands
w i l l not be explained (see the QED manual); the edit ing control
characters are summarized in Appendix B.
GO

Source statements can be read from a f i l e ,

One other difference between QFD and the editor

- begins execution of the SNOBOL statements a f te r closinpl
all open f i l e s and clearing a l l variables and reset t ing preset
variables and functions.
respond with "." .
by the address of the GO.

execution begins a t the first statement.

"--OK" is printed out as a warning;
The first statement executed is given

I f no address is given, then

BREAK - sets up breakpoints a t a l l statements i n the interval
addressed.

that statement and returns control t o the editor.
A break at a statement is made before executing

- 39-
TUN? - kuq.t. I - k , G o , M A ? *&&lay\ ,p.;l,.*h,

KILL - releases a11 breakpoints i n the interval addressed.
LIST
PROCEED - continues execution a f te r a breakpoint.

- pr in ts a l l breakpoints i n the interval addressed.

N-T - wecdte5 IJ &&@WQ,& (he&,& =I)
A single rubout during execution w i l l cause a break a t the

start of the next statement., (Remember tha t t o coaplete the

current statement a l l teletype input must be complqted. You
may also have t o wait u n t i l the teletype output buffer is
empty before seeing where the break w a s done; t h i s ibuffer may
have as much as 1’5 seconds worth of typing i n it.)

(before finishing the statement).
in t h i s case.

A second rubout w i l l return t o the editor immqdiately

It is not possible t o proceed

An unlabeled statement may be executed while irn the edi tor
by typing it in. O f course, it must start with a slpace. I n
particular, branches (goto’s) m e legal. This is the way t o
begin execution without the side e f fec ts of the GO icomand.

The following m e equivalent ($ printed by the edi tbr)

$Go.
$1GO.

&@RE=*

To s e t a breakpoint a t every statement type

O r t o k i l l a l l breakpoints type
@ILL.

$PROCEED.

This is an example of a SNOBQL statement l ine.
$ 0uTm = muT I

-40-

Special. Operations

The source statements must be written in printable characters.
To enter non-printable characters, e.g., in to a string, type &

followed by - 3 octa l digi ts , e.g., 8d.55, or e lse & followed by

a non-octal character, e.g., &A; however, i n the l a t t e r case,
characters 6 t o 37 will remain unchanged, the others (40-77)
will become the corresponding control characters. Note tha t
& may only be entered by typing &bc or m06. To aid the above,
the $ editing character produces four characters, &XXX, where
XXX is the oc ta l code of the next character typed.

Continuation of a statement is possible by typing cC a t
the end of the line t o be continued. This character i s entered
in to the source s t r ing and is treated l i ke a blank when Wc is
used, but i s ignored by the compiler.
type any needed blanks in the source statement.
typing linefeed is equivalent t o typing c .

same rules as a source statement except t h a t cC is deleted and
& codes are translated into internal form.
character position causes fa i lure of the statement (due t o end
of transmission).

Therefore, be sure t o
I n the editor

C

A l l teletype l ine input is edited and is subject t o the

DC i n the first

Statements which begin with an * are treated as comments.

'3

Comments have no affect on the execution of the program.
Execution is done the same as i f the comments were not present.

Keywords

Keywords provide an interface between the SNOBOL4 program
and cer ta in in te rna l symbols i n the SNOBOL4 system.
expected that additional keywords beyond those listeid below w i l l

be implemented.

It is

Read-only keywords :

@STCOUNT contains the number of statements t h a t have been
entered since execution began.

WTFCOUNT contains the number of statements that have f a i l ed .
contains the current l eve l of recursion.

User changeable f lags (a f l a g which i s non-negative is off ,
negative i s on):

@ANCHOR if on, sets the mode of pat tern matching t o anchored,
t h a t is, a l l pat terns must match beginning witth the first
character of the subject s t r ing .

@FULLSCAN if on sets the mode of pat tern matching t o t r y a l l

possible matches regardless of the impossibility of ever
matching (i .e . , no heur i s t ics t o speed up pat tern matching).

Changeable limits :

@NXLNG!I!H is the l imi t on the length of s t r ings t h a t can be

formed.
can be se t .

It i s preset t o 32$$$ which is the lbrgest it

@STLIMIT is the l i m i t on the number of statemenbs t h a t can
be executed.

integer can be. It is preset t o w (m d can have a
maximum 0f)223-~.

It is preset t o m 2"- 1 (&, w\m)
@INTLIMIT i s the l i m i t on the maximum absolute value an

WLPHARET contains fABCDEFGHIJKI"OPQRSTWXSYZ'
@DIGITS contains 'Jd~23456789

The following have the same values that the corresponding
predefined pattern variables i n i t i a l l y have.

-42-

Literals (these keywords have predefined values and are unchangeable) :

@ARB
@RRL
mEM

WAIL
m N C E

@ABORT

c'

-43-

c
Pseudo-Teletype Functions

There are a number of predefined functions whiuh enable
communication with a pseudo-teletype.

LOGIN(), Lx)GOUT(), WAIT(), SEND(S), ATSEND(S), RF;CV(N), and
RECVLINE().
can be used independently of the pseudo-teletype fuqctions.
The conditional command processing capabili ty produaed by the
combination of the pseudo-teletype functions and the SNOBOL

language has been inspired by the CCP subsystem.

The l i s t inc4udes

Additionally, there is the ECHO(N) f w c t i o n which

LOGIN() or LOGIN(NAME,PASSWORD)

The LOGIN function may be cal led with either two arguments
The LOGIN function attempts t o log i n (ENTER) or no arguments.

the user a t a pseudo-teletype e i the r under h i s name or under
another name. If two arguments are given, t he first is a user
name and the second i s the corresponding password t@ be used i n
entering a t the pseudo-teletype. If no arguments a(e given, the

user is logged i n under h i s own name and password.
successfil , it returns a n u l l s t r i n g as i ts value &4d places the
pseudo-teletype i n BEGINNER mode a t the EXECUTIVE l$ve1 with
the input and output buffers clear.
t o one of the following reasons:

I f I D G I N i s

If I D G I N fails) it is due

1. No pseudo-teletype is free.
2. No room on the time-sharing system.
3. The user name or password is incorrect.

It is an e r ror t o t r y t o LOGIN i f a previous LOGIN bas not been
logged out. It is also an e r ro r t o ca l l WAIT(), S$XD(S) ,

ATSEND(S), RECV(N), or RECVLINE() if I O G I N has not been
successfully called.

-44-

The LOGOUT function is used to log out the pseudo-teletype.
The user is automatically logged out (if logged in) whenever the
GO or FINISHED command is used in the SNOBOL editor.
LOGOUT f’unction succeeds, it will return a null value.
fail if the user is not logged in at a pseudo-teletype.

If the
It w i l l

WAIT()

The WAIT function always succeeds and returns the null
string as its value, but before returning it waits until the
pseudo-teletype is waiting for the teletype input with an empty
input buffer.
from the last SEND or ATSEND function call. Also, before
returning it clears the pseudo-teletype output buffer.

While it is waiting, it throws away all output

SEND(S)

The SEND f’unction requires one argument which must be a
string.
the argument string to the pseudo-teletype.
if the internal collection buffer (about 6p)Iba characters long)
of characters from the pseudo-teletype overflows before all
the characters are sent. The SEND function succeeds with a
null string as its value.

SEND first does a WAIT, then sends the characters of
An error results

The difference between ATSEND and SEND is that ATSEND does
not do a WAIT; instead it sends aubouts to the pseudo-teletype
to get it back to the EXECUTIVE level.
may want to wait until the pseudo-teletype is waiting for input
or to receive all the output from the pseudo-teletype before
preceding with an ATSEND. To do this either do a WAIT() or

Many times the user

I , , .
i -43 -

enough RECV's or RECVLINE's t o col lect a l l the output. Both

SEND and ATSEND i n i t i a l i z e the collection machinery, t ha t is,
previous output from the pseudo-teletype i s discarddd.

REC V(N)

RECV(N) takes an integer argument (N > PI). It col lects l i t e r a l l y
the next X characters (X not greater than N but othqrwise as
large as possible) from the pseudo-teletype output qesulting
from the last SEND or ATSEND.

that a11 output from the last SEND or ATSEND has aWeady been
collected.
the X characters as i ts value. It should be noted 4hat after

any SEND or ATSEND, a t most one c a l l of RECV(N) can successfully
return with l e s s than N characters. Also, the fl;mc$ion f a i l s
only i f the pseudo-teletype i s waiting f o r input.

If X is 6, RECV f a i l & , indicating

If X is greater than $, RECV succeeds i q returning

RECVLINE ()

The RECVLINE function is used for receiving the output
from the pseudo-teletype by l ine . The algorithm i s tha t the
first character i s ignored i f it is a linefeed, theq a l l
characters up t o a carriage return are collected and returned
as the value of RECVLINE; the carriage return is di$carded.
If the output from the pseudo-teletype does not contain a
carriage return, then a l l the remaining characters are returned,
unless the returned s t r ing would be the nul l str ing, i n which
case RECVLINE f a i l s . RECV and RECVLINE can be inteamixed.

The following will pr in t the same thing as whaa would
appear on the pseudo-teletype except it outputs an qxtra
carriage return, linefeed i n the case where the last$ l ine from
the pseudo-teletype does not terminate with a carrigge return,
l inef eed.
OUTLOOP OUTPUT = REcvLm() :S(OuTLOoP)

r

a

-46-

"he ECHO function requires an integer string argument.
ECHO It succeeds and returns the nu l l str ing as i ts value.

i s used for turning on and off the echoing of characters ty-ped

during teletype input i n the running of a SNOBOL program. If

the argument is negative, the echoing of characters is turned
off, if non-negative, it is turned on. Turning off the echo may be

of use i n collecting passwords. Also, it i s of use in preventing
a double echoing ef fec t t h a t would ex is t i n the first sample
program if the echo was not turned of f .

0
h

-47a

r': i, Sample Pseudo-Teletype Prop;rams

* This program implements a direct interaction with the
* pseudo-teletype.

*
* pseudo-teletype.
* If a control T is typed, the pseudo-teletype is logged out.

If a control cis typed, a rubou% is sent to the

BEGIN LOGIN()
ECHO(-1)

LOOPA A=INPUTC
IDENT(A, '&t') LOGOUT() :S(END)
IDENT(A, SEND(' 8 ~ 3 7 ') :S(LOOPB)
SENTI(A)

LOOPB OUTPUTC = RECV(@MAXLNGTH) :S(IOOPB) F(LO0PA)
* This program does a fixed assembly, load and a dwp on a
* specified file (second 6 7 . 0 FiL

* Output from the pseudo-teletype also goes to a specified
* file (first -).

OW=/LE

BEGIN DEFINE('XMIT
N = OPENOUT(

ASSIGN('OUT' ,N)
LoGI" 1

\

XMIT("KDF.RS1. '/Sl' .RS2. '/S2' .F.")
XMIT("NARP./Sl. '/Bl' . ")
XMIT("NARP./S2. '/B2' .")
XMM!("DDT . ; T/Bl, ; T/B2. @DUMP ON FILE" . ")

FIN1 CMSE(N) LOGOUT() :(END)

XMIT SEND(X)
XMIT1 OUT = RECVLIME() :F(RETURN)

OUT ' ? ' :F(XMITl)
OUTPUT = '?ERROR' : (FINI)

-48-

APPENDM A

Primitive F’unct ions

NOTANY(s)
SPAN(s)
B W (S)

FQS(1)
RFOS (I)
TAB(I)
RTAB (I)

LEN11
ARBNO (P)

S I Z E (s)
Im, J)
LT(I, J)
GE(I, J)
GT(I, J)
EQ(I, J)
NE(I, J)
C H m S)

LINE(S)
OPENIN(S)

OPENOUT(S)

CLOSE (I)
ASSIGN(S, I)

LENGTH(I, J)
DEFINE (s, s)
INTEGER(X)

TRms)

T m ()
CLOCK(I)

RELEASE (S)

DATE()

DENT(S, S)
DUFFER(S, S)
UM~STACK (K)

v
C-

t
0

' , - -49-
(Appendix A Continued)

Variables With Preset Values

ARB
BAL
REM

FAIL

FENCE
ABORT

Special Input -Output Variable s

IMPUT
OUTPUT

I N W T C
OUTPUTC -
ht=lL€
OvTFl L G
Reserved Labels

RFTURN
FFBTURN

END

-5 0-
(Appendix A Continued)

Operator Precedence Table

binary

unary

*, /
M

+,-,*,$ (highest)

3 ..
3 d

1

- ,

,7--

I

s'

c

(Appendix A Continued)

Keywords

@ABORT
ejJlLPHAaET

@ANCHOR

d4ARB
@BAL
@DIGITS

WAIL
@FENCE

WULLSCAN

OINTLIMIT

@LJ3vEL

W L N G T H

w
@STCOUNT

@TFCOUNT

@STLIMIT

Pseudo-Teletype Functions

LOGIN(NAME, PASSWORD)

J-x)GouT(1
WAIT(1
SENm)

RECV(N)

RECVLINE()

ATSEND (S)

ECHO (h)

-5 1-

-5 2-

APPENDIX B I

EDITING COIolmaOL CHARACTERS

Control Chwacter

G

H

I
J, LINEFEED

K
L
M,CARRIAGE RETURN

N
0

P

Q
R
S
T

U

v
W

X
Y
2
c

Result

Delete l a s t character typed

No action
Copy character from old lid?

Terminate or copy r e s t of l~ ine
Change insert-replace mode
Copy r e s t of old l ine, no twin@;
No action
Copy t o end of old l ine
Tab

Continuation
Give code (& fie$-+ c h $ped.

Delete l ine
Terminate statement
Character delete, restorative
Copy up t o next character t b e d
Skip up t o next character twed

Delete statement, restoratike
Retype, fast
Skip character
Retype, aligned
Copy up t o next tab stop

Delete word
Skip through next character1
Concatenate and re-edit
Copy through next character
Continuation

7 race iJt& &l fihall

I I
I -3 --

-5 3-

References

D.C. Angluin, and L. P. Deutsch, "Reference Ma3flualY Q.E.D.,
Time-sharing Editor," Document No, R-15, Project Genie,
Advanced Research Projects Agency, University of C a l i f . ,
Berkeley, California (March 26, 1968)

E.J. Desautels, and Douglas K. Smith, "An IntrOduction
To The String Processi
Systems and Languages, 1967) pp. 419-451+

Language SNOBQ&" Programming

L. Peter Deutsch, Larry Durham, and Butler W. Zampson,
"Reference Manual, Time-Shwing System," Document No. R-21,
Project Genie, Advanced Research Projects Agencty, University
of C a l i f . , Berkeley, California (November 13, 1967)

D. J. Fmber, R. E , Griswold, and I. P. Polonsky, "The
SNOBOL3 Programming Language," Bell System Technical
Journal (July- August , 1966) pp. 895-943

Allen Forte, "SNOBOL3 Primer," Massachusetts Irbstitute of
Technology, Cambridge, Massachusetts, and LondOn, England,
(1967 1
C. A, Grant, "Reference Manual, CCP, Conditionql Command
Processor," Document No, R-29, Project Genie, Advanced
Research Projects Agency, University of C a l i f . , Berkeley,
California (JUQ 14, 1967)

R. E. Griswold, J, F. Poage, and I. P. Polonsky, "Preliminary
Description of the SNOBOL4 Programming La~~+aga," Bel l .
Tzlephone Laboratories , Inc.

R , E , Griswold, J, F. Poage, and I. P. Polonsky', "Preliminary
Report On The SNOBOL4 Programming Language," Bei l l Telephone

Holmdel, New Jerdey, S4D1

Laborat or i e 8 , Inc . , HoJmdel , New Jersey (November 22, 1967)
S4D4

R. E. Griswold, J. F. Poage, and I. P. Polonsky, "Preliminary
Report On The SNOBOL4 Programming Lang;uage," Be13 Tele hone
Labortories, Inc. , Holmdel, New Jersey (March 20, 19687 S4D4b

[lo] Butler W. Lampson, "930 SNOBOL System," Document No. 3O.5O.7OY
Project Genie, Advanced Research Projects Agencr, University
of Calif., Berkeley, California (April 18, 1966)

a",' --

